Max. Marks: 60

Time : 3 hours

Answer all questions. You may use theorems/propositions proved in the class after correctly stating them. Any other claim must be accompanied by a proof.

- (1) (a) Compute the groups Hⁱ(X;G) where X = S² × ℝP² and G = ℤ, ℤ₂. [6+6]
 (b) Compute the cohomology ring H^{*}(ℂPⁿ;ℤ). [10]
 - (c) Let X be a compact orientable 5-manifold. Say as much as you can about the homology groups $H_i(X;\mathbb{Z})$. [10]
- (2) (a) Define the unreduced suspension SX of a space X. Show that SS^n is homeomorphic to S^{n+1} . [2+4]
 - (b) Define the term *fibration*. Let $E = \{(x, y) \in \mathbb{R}^2 : |y| \le |x|\}$. Show that the map $p : E \longrightarrow \mathbb{R}$ defined by p(x, y) = x is a fibration. Explain why p cannot be a fiber bundle. [2+6+2]
 - (c) Show that the quotient map $p: S^{2n+1} \longrightarrow \mathbb{C}P^n$ is a fiber bundle with fiber S^1 . Show that the quotient map $p: S^3 \longrightarrow \mathbb{C}P^1 = S^2$ is essential. [6+6]